
REXX on NodeJS

Disclaimer
This SOFTWARE PRODUCT is provided by El Condor "as is" and "with all faults." El Condor makes no representations
or warranties of any kind concerning the safety, suitability, lack of viruses, inaccuracies, typographical errors, or other
harmful components of this SOFTWARE PRODUCT. There are inherent dangers in the use of any software, and you are
solely responsible for determining whether this SOFTWARE PRODUCT is compatible with your equipment and other
software installed on your equipment. You are also solely responsible for the protection of your equipment and backup
of your data, and El Condor will not be liable for any damages you may suffer in connection with using, modifying, or
distributing this SOFTWARE PRODUCT.

You can use this SOFTWARE PRODUCT freely, if you would you can credit me in program comment:

El Condor – CONDOR INFORMATIQUE – Turin

Comments, suggestions and criticisms are welcomed: mail to rossati@libero.it

Conventions
Commands syntax, instructions in programming language and examples are with font COURIER NEW. The

optional parties of syntactic explanation are contained between [square parentheses], alternatives are
separated by | and the variable parties are in italics.

mailto:rossati@libero.it

Contents table
Introduction..2

A short overview of REXX (and ooREXX)..2
Some points about REXX...2

Changes to the web server..3
The NodeJS demo..3
The REXX script..4

Analysis of requests..4
Management of temporary file..5

Conclusions...5

Introduction

In a CodeProject Article1 I described how to use PHP scripts in a NodeJS Web server, in this article I deal with the
use of REXX scripts, but I show only the few JavaScript instructions needed to manage them while the main
purpose is the analysis of REXX and problems that may arise from its use.

A short overview of REXX (and ooREXX)
REXX (Restructured Extended Executor) is an interpreted programming language developed at IBM by Mike
Cowlishaw in 1979. It is a structured, high-level programming language designed to ease of learning and reading.
REXX interpreters and compilers exist for a wide range of computing platforms, proprietary and open source;
REXX is used as a scripting and macro language, mostly for processing data and text and for generating reports; it
has evolved in the years and in 1996 ooREXX, a version with the support of the objects, has been released.
REXX can works in Common Gateway Interface (CGI) programming and also embedded on HTML pages (like for
example PHP).

Some points about REXX

All what is not recognized as statement is sent to the Operating System; this is due to the purpose for which REXX
was created, namely the management of the various jobs carried out on mainframes; this also explains why the
concatenation of strings occurs by juxtaposition with an inserted space (the operator || avoid this). Although in the
object version of REXX there are complex data structures such as arrays, lists, queues, etc. these, in the original
REXX, it can be built using a particular type of variable named stem, i.e. a variable identified by a period behind
the name. After the period, one can add one or many variables (separated by period) obtaining arrays or complex
structure. If the variable is numeric stem is an array otherwise it is a hash table2.
Below an example to verify if the RANDOM function passes the chi square test.

dice. = 0 -- set array defaults value
loop i = 1 while i < 61

a = RANDOM(1,6)
dice.a = dice.a + 1

end
loop i = 1 while i < 7

dice.7 = dice.7 + (dice.i - 10) ** 2
end
say dice.7 / 10 -- if value < 11.07 Ok (test square chi with 5 degrees of freedom)

Object can act by calling object's actions, namely by sending messages where the "message send" symbol is ~
called twiddle. Objects respond to these messages by performing an action and possibly returning data or an object.

1 See NodeJS WEB Server running PHP.
2 JavaScript arrays (1995) are very similar to REXX stems (1979).

https://www.codeproject.com/Articles/1273324/NodeJS-WEB-Server-running-PHP

Changes to the web server
In the WEB Server script tryNodeJS.js described in the aforementioned Article the REXX script management
has been added:

} else if (type == "rex") {
var r = [__basedir + pathName];
// prepare fields for PHP
for(q in parms) {r[r.length] = q; r[r.length] = parms[q].replace(/ /g,"+");}

console.log(__basedir + pathName + r)
var spawnRex = spawn('rexx',r);
spawnRex.stdout.on('data',function (data) {

response.writeHead(200, {'Content-Type': cType});
response.end(data);

});
spawnRex.stderr.on('data',function (data) {

console.log("Orror: " + data);
});

} else {

In the above fragment the parameters for the REXX interpreter are a set of couples key value taken from the form,
for example a request is analogous to: rexx getdata.rex Type Cite Author Adam+Smith.

The NodeJS demo

The demo is simply a page where one can choose to show an aphorism or an image (served by a REXX script
questioning a SQLite Data Base) and a choice of some crossing data in SQLite Data Base managed by a PHP
script3.

3 See Cross of fields in a table of Data Base accessible via PDO .

https://www.codeproject.com/Articles/691211/Cross-of-fields-in-a-table-of-Data-Base-accessible

The REXX script

The REXX interpreter is started with the syntax rexx REXXscript parm1 The script deals with requests on
list of authors of aphorisms, aphorisms of an author and a list of images.
Below are analyzed the main points of the script whose complete source is attached.

Recovery of the requests parameters

parms = arg(1) -- arg(1) contains all parameters separated by space
do while parms \= ""

parse var parms key value parms
value = changestr("+",value," ") -- restore spaces
dizParms.key = value

end

dizParms. is a REXX stem used for storing key-value object; parse var is a statement that split parms, a
string of parameters separated by space, into key and value (the possible remaining of the string is recovered in
parms).

Analysis of requests

This is accomplished by the SELECT instruction that has the following structure:

SELECT
 When Condition Then
 Statement
 When Condition Then Do
 Statements
 End Otherwise
 ...
End
In the index.html the combo boxes are built by a form generator4 that calls, via Ajax, a list of the combo box
items:

When dizParms.key == "Images" Then do f = .File~new(curdir || "\images")~list~sortwith(.caselesscomparator~new) myRE
= .RegularExpression~new("?*(.gif|.png|.jpg)") images = .array~of() loop k over f if myRE~match(k~lower) == 1 Then
images~append(k) end k say images~toString(,",") exit
end

This is enough cumbersome, but it is necessary for taking only the desired files; without this constraint it would be
simply (so to speak): say .File~new(curdir || "\
images")~list~sortwith(.caselesscomparator~new)~toString(,",").

For a request of citation the SQLite engine is started with a Data Base name and a SQL SELECT statement asking
the fields dove (where), Data (Date) and Citazione (Quote); the answer is similar to:
The Wealth of Nations Book V Chapter I|1776|Wherever there is great property, there is great inequality. .
When dizParms.key == "Cite" Then do table = "Citazioni" authorGroup = "Author_Group" Author = "Author" if
dizParms.authorGroup == "IT Aphorisms" Then table = "InforCitazioni" sql = "SELECT Dove,Data,Citazione FROM "
|| table || " WHERE Autore = '" || dizParms.Author || "'"
 'sqlite3 condor.sqlite "' sql '"> ' || flname response = "<table><caption>" || dizParms.Author || "</caption>" -- response string do while
lines(flname) > 0 line = linein(flname) response = response || "<tr><td>" || Changestr("|",line,"</td><td>") || "</td></tr>" end say
response||"</table>" end

4 A JavaScript Form Generator

https://www.codeproject.com/articles/1029517/a-javascript-form-generator

Management of temporary file

signal on notready -- handle file errors curdir = directory() flname = SysTempFileName(curdir||"\tempfile.???")
...
CALL STREAM flname, 'C', 'CLOSE'
"del" flname
...

Conclusions

REXX can be easily used in NodeJS taking into account some (small) limitations among which:

 Regular Expression mast be activated including a special class: ::requires "rxregexp.cls"; the
functionalities are a rather limited subset and not entirely compatible with those present in JavaScript or
PHP.

 The possibly space(s) in parameters must be "masked": r[r.length] = parms[q].replace(/
/g,"+") . Another obstacle is the difficulty, which I have not solved, to pass parameters with special
characters (like Author Dom Hélder Câmara).

 Databases are supported by REXX/SQL a set of external functions by deal with Oracle, DB2, MySQL,
SQLite and ODBC data-sources.

	Introduction
	A short overview of REXX (and ooREXX)
	Some points about REXX

	Changes to the web server
	The NodeJS demo
	The REXX script
	Analysis of requests
	Management of temporary file

	Conclusions

